PROGRAM
kółka rozwijającego logiczne myślenie i umiejętności matematyczne
DLA UCZNIÓW KLAS DRUGICH i TRZECICH
„ LUBIĘ ŁAMANIE GŁOWY ”
opracowała: Małgorzata Sprawska
UWAGI WSTĘPNE
Świat zmienia się z nieprawdopodobną szybkością i ludzie przestali się już temu dziwić. Bieg wydarzeń ulega przyspieszeniu, odległości zmniejszają się, a człowiek współczesny zasypywany jest co dzień ogromem nowych wiadomości. Okres dzieciństwa staje się nieustannym przepychaniem się przez piętrzący się labirynt informacji. Jak w tym chaosie dostrzec prawidłowości, przetworzyć odpowiednio dane, pokonać trudności i osiągnąć cel? Jednym z narzędzi stworzonych przez ludzkość jest matematyka, niezbędna w opisywaniu problemu i dochodzeniu do jego rozwiązania.
Najbardziej chłonny do opanowania tego wspaniałego narzędzia jest właśnie umysł dziecka w młodszym wieku szkolnym. Jest to wiek pytań i nieustannych poszukiwań. Umiejętnie podsunięte wskazówki i sposoby analizowania danych mogą stać się dla dziecka doskonałą pomocą w poruszaniu się po współczesnym labiryncie informacji. Wyposażą dziecko w aparat ułatwiający odróżnianie danych istotnych od zbędnych i wspomagający twórcze przetwarzanie i kreowanie rzeczywistości.
Rolą nauczyciela jest tak poprowadzić dziecko w jego drodze do samodoskonalenia i samorealizacji, aby proponowane metody były efektywne i motywowały do dalszego wysiłku. Współczesny świat wymaga od nas, pedagogów kreowania ludzi twórczych, zdolnych do szybkiego podejmowania decyzji, umiejących współpracować w zespole i wykorzystujących to zbiorowe doświadczenie w dochodzeniu do celu. Taki typ kształcenia nie może więc opierać się tylko na podaniu gotowych sposobów działania, czy tworzenia. Zmusza nas do poszukiwania metod otwartych, ćwiczących wytrwałość w poszukiwaniu nowatorskich, ekonomicznie opłacalnych dróg dochodzenia do rozwiązania problemu. Ten trudny proces wyzwalania w dzieciach kreatywnego myślenia mogą wzbogacić różnice indywidualne i pokłady możliwości tkwiące w naszych wychowankach. Przydatne będą więc wszelkie formy pracy zespołowej, umożliwiające łączenie osobistych doświadczeń członków grupy.
Podsumowując, celem naszych spotkań z matematyką jest rozwijanie umiejętności dostrzegania problemów, stawiania i weryfikowania hipotez, klasyfikowania, analizowania, syntetyzowania i uogólniania danych, elastycznego przetwarzania ich w drodze do najprostszych, najbardziej opłacalnych sposobów rozwiązań i trwałego przechowywania tych doświadczeń w pamięci.
Umysł człowieka to niezbadane do końca w swych możliwościach, doskonałe narzędzie do rozwiązywania problemów. Świadczą o tym tysiąclecia naszej cywilizacji i obecny rozwój techniki, dzięki której podporządkowujemy sobie otaczający nas świat. Dajmy dzieciom szansę takiego uaktywnienia tego narzędzia, by pozwalał mu sprawnie i efektywnie pokonywać codzienne trudności, by był jego sprzymierzeńcem w urealnianiu życiowego celu. Pamiętajmy, że umysł raz rozbudzony, będzie domagać się ciągłej pożywki do działania, przez co zmusi swojego „ właściciela ” do samodoskonalenia i twórczego, świadomego zaangażowania. Dziecko, które polubi matematykę i jej zasady rozwiązywania problemów, nie będzie nigdy bezbronne we współczesnym świecie. Wręcz przeciwnie, będzie zmagać się z codziennością za pomocą potężnej broni – logicznego myślenia.
ZAŁOŻENIA PROGRAMU
1. Cele i zadania
• wdrażanie uczniów do analizowania sytuacji problemowych od kątem ich racjonalizowania i matematyzacji
• kształtowanie umiejętności dostrzegania zasad i prawidłowości matematycznych i ich wykorzystywania w rozwiązywaniu problemów
• wdrażanie do samodzielnego, twórczego myślenia, poszukiwania różnych dróg dochodzenia do celu
• motywowanie do podejmowania kolejnego wysiłku, pomimo uprzedniej porażki
• zachęcanie do rozwijania własnych zainteresowań i samodoskonalenia
• wyzwalanie radości podczas „ zabawy ” matematycznej, wzmacnianie pozytywnych emocji
• stwarzanie sytuacji umożliwiających osiąganie sukcesu i zadowolenia z własnych osiągnięć
• rozwijanie umiejętności twórczej współpracy i dzielenia się własną wiedzą z rówieśnikami o podobnych zainteresowaniach
• przygotowanie do szkolnego konkursu matematycznego klas II i III „ Dziś matematyk – jutro informatyk ” oraz Międzynarodowego Konkursu Matematycznego „ Kangur ”
• poznanie wybranych elementów z programu matematyki klas starszych na zasadzie propedeutycznej
2. Charakterystyka uczestników zajęć
Program i zajęcia przeznaczone są dla uczniów klas II i III, zainteresowanych matematyką lub wykazujących uzdolnienia w tym kierunku. Uczestnictwo w nich jest dobrowolne i opiera się na świadomym wyborze dokonanym przez dzieci.
W celu weryfikacji przez dzieci własnej decyzji, nauczyciel na pierwszych zajęciach szczegółowo informuje uczniów o celach i zadaniach programu, zachęca do systematycznego uczęszczania, wskazuje korzyści z dodatkowej „zabawy z matematyką” – królową nauk.
3. Wielkość grupy
Grupa powinna liczyć maksymalnie 10 – 15 osób ze względu na przyjęte metody i formy ( np. pracę zespołową podczas rozwiązywania problemów ) i optymalizację kontroli działań indywidualnych uczniów. Ze względu jednak na dobrowolny charakter uczestnictwa w tych pozalekcyjnych zajęciach dopuszcza się pracę z większym zespołem. Nie można bowiem odmówić dziecku, które wykazuje i podtrzymuje chęć podjęcia dodatkowego wysiłku. Z doświadczeń podobnych zespołów wynika, że po pewnym czasie liczebność grupy stabilizuje się jednak na pożądanym, optymalnym poziomie 10 -15 osób.
4. Sposoby i formy realizacji
Program „ Lubię łamanie głowy ” jest programem edukacyjnym realizowanym w wymiarze 1- 2 godzin tygodniowo w ciągu całego roku szkolnego w ramach zajęć kółka matematycznego dla klas II i III.
Proponowane formy i metody pracy z uczniami są urozmaicone i zależą od charakteru omawianego materiału i możliwości psycho – fizycznych dzieci. Cały czas należy pamiętać o zabawowym charakterze tych spotkań, ponieważ pozytywne emocje wzmacniają motywację i pamięć uczniów. Wyraźnie rozgranicza się wtedy obowiązkowy cykl lekcyjny od zajęć pozalekcyjnych, w których uczestnictwo jest dobrowolne.
Do przewidywanych metod i form należą:
- pogadanka
- pokaz i obserwacja
- „ Burza mózgów ”
- dyskusja
- sprawdzanie hipotez przez doświadczenie
- gry i zabawy matematyczne ( planszowe, karciane, komputerowe itp.)
- rebusy, łamigłówki, krzyżówki itp.
- praca indywidualna i zespołowa jednolita i zróżnicowana
5. Ogólna charakterystyka programu
Program stanowi uporządkowany tematycznie zestaw zajęć. Każdemu zagadnieniu przyporządkowane są ćwiczenia, gry, zabawy itp. oraz odpowiednie metody i formy pracy, które prowadzą do osiągnięcia określonych celów szczegółowych. Czas realizacji każdego zagadnienia wynosi 2-4 godziny lekcyjne.
6. Umiejętności ucznia po realizacji programu
Uczeń powinien:
• definiować i analizować problem matematyczny – stawiać właściwe pytania,
• dostrzegać w zadaniach prawidłowości ( porządkować, klasyfikować, uogólniać dane ),
• wykorzystywać prawa i zasady matematyczne w dochodzeniu do celu, poszukiwać różnych dróg rozwiązań, wybierać te najbardziej racjonalne i ekonomiczne,
• twórczo współpracować w zespole, wykorzystywać zbiorowe doświadczenie,
• podejmować kolejny wysiłek, nie zrażając się uprzednim niepowodzeniem,
• podejmować działania służące samodoskonaleniu i rozwijaniu własnych zainteresowań.
SZCZEGÓŁY PROGRAMU
Tematyka zajęć: Rozgrzewka matematyczna
1. Cele:
- samodzielnie rozwiązuje zadania tekstowe o różnym stopniu trudności jako sprawdzian możliwości
- wykonuje proste obliczenia w zakresie 30 lub 100 jako sprawdzian tempa obliczeń
2. Metody i formy pracy:
- indywidualna jednolita
3. Materiały:
zestaw zadań
4. Czas realizacji:
1 godzina
Tematyka zajęć: Ważenie i mierzenie – sprawiedliwy podział, dzielenie z resztą
1. Cele:
- stosuje jednostki miary i wagi
- zamienia je z jednostek większych na mniejsze i odwrotnie
- wykorzystuje własność równowagi do rozwiązywania problemów
- rozumie i oblicza dzielenie z resztą
2. Metody i formy pracy:
- indywidualna jednolita
- prezentacja
- doświadczenie
- dyskusja
3. Materiały:
zestawy zadań, miara centymetrowa, waga z odważnikami
4. Czas realizacji:
3 godziny
Tematyka zajęć: Własności ciągów liczb naturalnych
1. Cele:
- rozróżnia liczby parzyste i nieparzyste
- wyszykuje prawidłowości danego zestawu liczbowego parzystego i nieparzystego
- wyszukuje różne zależności w ciągach liczbowych
2. Metody i formy pracy:
- zespołowa jednolita i zróżnicowana
- pogadanka
- gry matematyczne
- łamigłówki
3. Materiały:
karty pracy, plansze do gier, karty
4. Czas realizacji:
3 godziny
Tematyka zajęć: Własności liczb naturalnych i działań na nich
1. Cele:
- sprawnie posługuje się terminologią matematyczną w zakresie nazewnictwa działań i liczb w tych działaniach
- wyszukuje zależności i powiązania podstawowe między działaniami ( odwrotność, przemienność, rozdzielność itp. ) i wykorzystuje je w rozwiązywaniu działań
- podejmuje próby wyszukiwania różnych zależności między działaniami czy zestawami działań
2. Metody i formy pracy:
- zespołowa jednolita i zróżnicowana
- indywidualna jednolita
- dyskusja
- „Burza mózgów”
- łamigłówki, zagadki matematyczne, magiczne kwadraty
- gry i szyfrowane teksty matematyczne
3. Materiały:
zestawy zadań, karty, kości, plansze do gier, zestawy zagadek i łamigłówek
4. Czas realizacji:
4 godziny
Tematyka zajęć: Geometria – figury na płaszczyźnie
1. Cele:
- rozróżnia figury geometryczne podstawowe oraz wybrane wielokąty
- rozwiązuje zadania praktyczne związane z obwodami wielokątów i powierzchni prostokątów,
- wykorzystuje i przekształca wzory na w / w obliczenia
- rozwiązuje zadania i łamigłówki konstrukcyjne na płaszczyźnie
2. Metody i formy pracy:
- indywidualna jednolita i zróżnicowana
- zespołowa jednolita i zróżnicowana
- weryfikacja hipotez przez doświadczenie
- zagadki geometryczne
3. Materiały:
zestawy zadań i zagadek, patyczki, plansze, figury
4. Czas realizacji:
3 godziny
Tematyka zajęć: Geometria – bryły
1. Cele:
- rozwiązuje łamigłówki konstrukcyjne w przestrzeni
- rozpoznaje wybrane bryły geometryczne ( prostopadłościan, sześcian, stożek ) i ich siatki, wykonuje ich modele
- podejmuje próby obliczeń pojemności prostopadłościanów
2. Metody i formy pracy:
- indywidualna jednolita i zróżnicowana
- zespołowa jednolita i zróżnicowana
- weryfikacja hipotez przez doświadczenie
- zagadki geometryczne
3. Materiały:
zestawy zadań, siatki figur, bryły
4. Czas realizacji:
3 godziny
Tematyka zajęć: Liczby arabskie i rzymskie
1. Cele:
- zna zapis liczbowy w systemie dziesiętnym za pomocą cyfr arabskich
- zna zapis liczb w systemie rzymskim
- wykonuje obliczenia na liczbach w zapisie rzymskim
- stosuje cyfry rzymskie w praktyce ( zapis dat, pięter, katalogowanie itp.)
2. Metody i formy pracy:
- indywidualna jednolita
- zespołowa jednolita
- krzyżówki, szyfry matematyczne
3. Materiały:
zestawy zadań i łamigłówek
4. Czas realizacji:
2 godziny
Tematyka zajęć: Obliczenia kalendarzowe, zegarowe, pieniężne
1. Cele:
- zamienia jednostki wartości z mniejszych na większe i odwrotnie
- wykonuje obliczenia kalendarzowe, zegarowe i pieniężne na wartościach całkowitych i dwumianowanych
2. Metody i formy pracy:
- indywidualna jednolita i zróżnicowana
- zespołowa jednolita
- zagadki matematyczne
- doświadczenie
3. Materiały:
zestawy zadań i zagadek, modele monet i banknotów, kalendarze, zegary
4. Czas realizacji:
2 godziny
Tematyka zajęć: Obliczenia miary i wagi – nowe jednostki wagi
1. Cele:
- zna i stosuje w obliczeniach nowe jednostki i rzadko używane ( kwintal, tona, mililitr, miligram )
2. Metody i formy pracy:
- indywidualna jednolita
- doświadczenie
3. Materiały:
zestaw zadań, plansze i przedmioty do prezentacji
4. Czas realizacji:
Tematyka zajęć: Ułamki zwykłe i dziesiętne
1. Cele:
- zna pojęcie ułamka zwykłego i dziesiętnego
- wykonuje proste obliczenia na w / w ułamkach
- zaznacza lub oblicza ułamek danej wartości
2. Metody i formy pracy:
- indywidualna jednolita
- zespołowa jednolita i zróżnicowana
3. Materiały:
zestawy zadań i łamigłówek, plansze i modele do prezentacji ułamków
4. Czas realizacji:
2 godziny
Tematyka zajęć: Działania pisemne
1. Cele:
- zna algorytmy czterech działań pisemnych
- wykorzystuje je w rozwiązywanych zadaniach
2. Metody i formy pracy:
- indywidualna jednolita i zróżnicowana
- pogadanka
- prezentacja
- krzyżówki, łamigłówki
3. Materiały:
zestawy zadań, krzyżówek i łamigłówek
4. Czas realizacji:
3 godziny
Tematyka zajęć: Zadania nietypowe, niepełne i z mylną informacją
1. Cele:
- analizuje treść zadania pod kątem poprawności matematycznej
- wyszukuje dane zbędne, uzupełnia brakujące informacje w treści zadań
- podejmuje próby układania zagadek, łamigłówek, krzyżówek, czy gier matematycznych
2. Metody i formy pracy:
- zespołowa jednolita i zróżnicowana
- zagadki i gry matematyczne
3. Materiały:
zestawy zadań i zagadek
4. Czas realizacji:
4 godziny
ŁĄCZNIE : 33 godziny
UWAGA!
W / w ilości godzin przeznaczonych na dane zagadnienie podano w przeliczeniu na 1 godzinę tygodniowo, a więc dla 1 grupy mieszanej ( klasy II i III razem). Ze względu jednak na inny stopień rozwoju logicznego myślenia i operacji matematycznych wskazane jest prowadzenie zajęć w dwóch grupach – klasy II i III oddzielnie. Ilość podanych godzin należy wówczas podwoić.
W zależności od możliwości i potrzeb zespołu dopuszcza się zwiększanie lub zmniejszanie ilości godzin przeznaczonych na dane zagadnienie, zgodnie z założeniem, że program powinien być elastyczny i modyfikowalny.
Kolejność i czas realizacji zagadnień programu powinna również zależeć od możliwości i zainteresowań zespołu. Niezależnie od omawianych treści matematycznych należy przy tym zwrócić szczególną uwagą na analizę związków istniejących między danymi, aby kształtować właściwe podejście do rozwiązywania problemów.
Zaleca się częste stosowanie technologii informatycznej i odpowiednich zadań i programów, ponieważ praca z komputerem stanowi niewątpliwie o atrakcyjności zajęć i przygotowuje młodych logistów do posługiwania się niezbędnym w dzisiejszych czasach narzędziem pracy.
Treści wytłuszczone – dotyczą klasy trzeciej.