Numer: 24120
Przesłano:

Matematyka w pigułce - rozwiązywanie zadań tekstowych, klasa VI

Scenariusz lekcji
Data:
Klasa: VI
Czas: 45 minut
Prowadzący:
Temat: Matematyka w pigułce – rozwiązywanie zadań tekstowych.
Uczeń potrafi:
dodawać, mnożyć i dzielić liczby naturalne;
zamieniać jednostki długości;
mnożyć i dodawać, dzielić i odejmować ułamki dziesiętne;
mnożyć i dzielić ułamki zwykłe;
obliczać pole prostokąta;
obliczać średnią arytmetyczną liczb;
rozwiązywać zadania tekstowe przedstawiające sytuacje problemowe.
Cele lekcji:
utrwalenie działań na ułamkach zwykłych i dziesiętnych w sytuacjach problemowych;
ćwiczenia w wykonywaniu obliczeń pieniężnych;
zastosowanie szacowania w sytuacjach problemowych.
Typ lekcji: ćwiczeniowa
Formy pracy: indywidualna, zbiorowa
Metody pracy: aktywizująca, problemowa, wzbudzająca ciekawość
Środki dydaktyczne: karty pracy, zeszyty przedmiotowe

Przebieg lekcji.
Przywitanie.
Sprawdzenie obecności.
Podanie tematu lekcji.
Nauczyciel objaśnia przebieg lekcji.
Nauczyciel odczytuje uczniom zagadkę lub rymowankę matematyczną, uczniowie chętni do udzielenia odpowiedzi zgłaszają się przez podniesienie ręki. Uczeń udzielający prawidłową odpowiedź ma prawo wybrać numer zadania, jakie będzie rozwiązywała klasa. Za prawidłową odpowiedź uczeń zostanie nagrodzony „+” za aktywność. Następnie bez znajomości tekstu, uczniowie zgłaszają się do rozwiązania zadania na tablicy. Chętny uczeń odczytuje tekst zadania, następnie rozwiązuje je na tablicy, a pozostali uczniowie po otrzymaniu tekstu rozwiązują zadanie samodzielnie w zeszycie. Konfrontacja rozwiązań. Jeżeli wśród rozwiązań uczniów będzie przedstawionych kilka sposobów rozwiązania wówczas chętni uczniowie przedstawią swoje rozwiązanie na tablicy. Na prawidłowe rozwiązanie zadania uczeń otrzymuje ocenę. Po rozwiązaniu zadania wracamy do momentu rymowanki lub zagadki.....
Podsumowanie lekcji.
Zadanie pracy domowej.
Zakończenie lekcji.


Załącznik 1.
Zagadki i rymowanki
Do dyspozycji masz wiadro mieszczące w sobie 5 litrów wody oraz mniejsze o pojemności 3 litrów. Jak za ich pomocą odmierzyć 1 litr wody?
Dwóch ojców i dwóch synów postanowiło zjeść jajka na śniadanie. W sumie zjedli ich trzy, z tym, że każdy zjadł całe jajko. Jak to mogło się stać?
Grupa przedszkolaków wyrusza na wycieczkę. Gdy ustawili się w pary, trójki oraz czwórki za każdym razem jedno dziecko było same. Dopiero po ustawieniu się w piątki nikt nie pozostał sam. Ilu przedszkolaków było w grupie?
Dokończ rymowankę.
Moi drodzy przyjaciele,
Najpierw w nawiasach liczymy wiele,
potem mnożymy i dzielimy.
a na końcu nam zostanie....................................
Jak zwiększyć liczbę 686 o 303 nic nie dodając?


Załącznik 2.
Zadania
W hurtowni owoców były trzy gatunki jabłek: I po 15 zł za skrzynkę, II po 14 zł za skrzynkę i III po 11 zł za skrzynkę. Właściciel sklepu kupił 8 skrzynek jabłek I gatunku i 4 skrzynki II gatunku. Ile zapłacił? Ile skrzynek mógłby kupić gdyby za całą sumę kupił najtańsze jabłka?

Gąsienica wdrapuje się na drzewo, którego wysokość wynosi 1,1m. W ciągu minuty wspina się 20 cm w górę, a w ciągu następnej minuty spełza 10 cm w dół i tak na przemian. Po ilu minutach osiągnie wierzchołek drzewa?

W Gimnazjum nr 2 odbywa się Finał Międzyszkolnych Zawodów w Tenisie Stołowym. Maurycy z siedmioma kolegami zakwalifikował się do tego turnieju. Pod opieką nauczyciela wychowania fizycznego pojechali na ten finał autobusem linii 257. Bilet normalny autobusowy kosztuje 2,50 zł. Uczniom przysługuje zniżka w wysokości połowy ceny biletu normalnego. Ile zapłacił nauczyciel za bilety ulgowe dla uczniów i normalny dla siebie na przejazd w obie strony?

Antek i jego czterej koledzy wyruszyli na tygodniowy biwak. Wszyscy razem codziennie zjadali 33/4 bochenka chleba. Piątego dnia dołączyli trzej koledzy i odtąd codziennie cała grupa zjadała 51/2 bochenka. Chłopcy za każdym razem dzielili chleb na równe porcje. Ile chleba zjadł Antek podczas całego biwaku?

Młodzież ze Szkolnego Koła Teatralnego dostała do zagospodarowania salę o wymiarach 5m x 4m i wysokości 3m. Uczniowie postanowili odmalować najpierw jej ściany (bez sufitu). Oblicz, ile puszek farby musieli kupić, jeżeli zawartością jednej puszki można pomalować 8 m^2 powierzchni? Ile zapłacą za farbę, jeżeli 1 puszka kosztuje 17,90 zł?

Samochód pana Jana zużywa 6, 5 litrów paliwa na 100 km. Jeden litr paliwa kosztuje 5,45 zł. Pan Jan zamierza pojechać samochodem do stadniny oddalonej o 40 km. Oblicz, ile będzie kosztowało paliwo na przejazd z domu do stadniny i z powrotem?

Jeden litr farby wystarcza na pomalowanie 7 m^2 powierzchni. W puszcze mieszczą się 2 litry farby. Ile puszek trzeba kupić, aby pomalować ściany i sufit pokoju w kształcie prostopadłościanu, w którym podłoga ma wymiary 4m x 3m, a wysokość pokoju wynosi 2,5 m, jeśli wiadomo, że w pokoju są dwa okna, każde o wymiarach 2m x 1,5m i drzwi o wymiarach 0,8m x 2m.

Ola w sierpniu zaoszczędziła z kieszonkowego 38 zł, we wrześniu 13 zł, natomiast w październiku trzy razy więcej niż we wrześniu. Ile średnio zaoszczędziła Ola każdego miesiąca?

Z klasówki z matematyki podsumowującej dział „Liczby naturalne” 9 uczniów otrzymało ocenę bardzo dobrą, 5 napisało klasówkę na czwórkę, sześciu otrzymało ocenę dostateczną, jeden dopuszczającą. Trzech uczniów będzie musiało jeszcze raz napisać klasówkę. Jaka część klasy otrzymała ocenę co najmniej dobrą z klasówki?

W sali muzealnej należy przeprowadzić renowację prostokątnej podłogi o wymiarach 12m x 8m. Prace polegają na dwukrotnym pomalowaniu podłogi lakierem bezbarwnym. Ile pięciolitrowych puszek trzeba kupić, jeżeli 1 litr lakieru wystarcza na pomalowanie 9m^2 powierzchni?

O nas | Reklama | Kontakt
Redakcja serwisu nie ponosi odpowiedzialności za treść publikacji, ogłoszeń oraz reklam.
Copyright © 2002-2025 Edux.pl
| Polityka prywatności | Wszystkie prawa zastrzeżone.
Prawa autorskie do publikacji posiadają autorzy tekstów.